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Motivation I

In the practice, it is extremely common to encounter missing data due
to collection difficulty, erroneous data, and etc. And most of the data
can be represented in the matrix. For example, if we consider each
row of a matrix is the features/ measurements of a single subject, a
matrix would represent the features of all the subjects/ population of
interest. To tackle the missing data problem, one of the tool is matrix
completion.
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Motivation II

Figure 1: source: https://www.fredhutch.org/en/news/spotlight/
2022/08/bs-einav-cellsys.html
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Preparation I

Norms
For any vector v , we denote by ∥v∥2, ∥v∥1 and ∥v∥∞ its ℓ2 norm, ℓ1 norm and ℓ∞ norm,
respectively.
For any matrix A =

[
Ai,j

]
1≤i≤m,1≤j≤n, we let ∥A∥, ∥A∥∗, ∥A∥F and ∥A∥∞ represent

respectively its spectral norm (i.e., the largest singular value of A ), its nuclear norm (i.e.,
the sum of singular values of A ), its Frobenius norm (i.e., ∥A∥F :=

√∑
i,j A2

i,j ), and its

entrywise ℓ∞ norm (i.e., ∥A∥∞ := maxi,j
∣∣Ai,j

∣∣). We also refer to ∥A∥2,∞ as the ℓ2,∞
norm of A, defined as ∥A∥2,∞ := maxi

∥∥Ai,·
∥∥

2. Similarly, we define the ℓ∞,2 norm of A as
∥A∥∞,2 :=

∥∥A⊤∥∥
2,∞.

Singular values of M are square roots of the eigenvalues of MHM .
The largest singular value σ1(M)= operator norm ∥M∥op := max∥x∥2=1 ∥Mx∥2.
In addition, for any matrices A =

[
Ai,j

]
1≤i≤m,1≤j≤n and B =

[
Bi,j

]
1≤i≤m,1≤j≤n, the inner

product of A and B is defined as and denoted by
⟨A,B⟩ =

∑
1≤i≤m,1≤j≤n Ai,j Bi,j = Tr

(
A⊤B

)
.

Zhiling Gu (Iowa State U.) Matrix Completion November 21, 2022 4



Preparation II

Consider M = M∗ + E and M∗ be two matrices of Rn1×n2 , n1 ≤ n2. Let
M∗ = U∗Σ∗V ∗, M = UΣV as follows

M∗ =

n1∑
i=1

σ⋆
i u⋆

i v⋆⊤
i =

[
U∗U∗

⊥
] [Σ∗ 0 0

0 Σ∗
⊥0

] [
V ⋆⊤

V ⋆⊤
⊥

]
;

M =

n1∑
i=1

σiuiv⊤
i =

[
UU⊥

] [Σ 0 0
0Σ⊥0

] [
V⊤

V⊤
⊥

]
.

Here, σ1 ≥ · · · ≥ σn1 (resp. σ⋆
1 ≥ · · · ≥ σ⋆

n1
) stand for the singular

values of M (resp. M⋆) arranged in descending order, ui (resp. u⋆
i

)
denotes the left singular vector associated with the singular value σi (
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Preparation III

resp. σ⋆
i

)
, and vi (resp. v⋆

i

)
represents the right singular vector

associated with σi ( resp. σ⋆
i

)
. In addition, we denote

Σ := diag ([σ1, · · · , σr ]) , Σ⊥ := diag ([σr+1, · · · , σn1 ]) ,

U := [u1, · · · ,ur ] ∈ Rn1×r , U⊥ := [ur+1, · · · ,un1 ] ∈ Rn1×(n1−r),

V := [v1, · · · ,vr ] ∈ Rn2×r , V⊥ := [vr+1, · · · ,vn2 ] ∈ Rn2×(n2−r)

The matrices Σ⋆,Σ⋆
⊥,U

⋆,U⋆
⊥,V

⋆,V ⋆
⊥ are defined analogously.

In addition, we define the distance between two matrices as

dist (U,U⋆) := min
R∈Or×r

∥UR − U⋆∥ (1)
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Problem formulation and assumption I

Suppose the data matrix M∗ is of dimension n1 × n2 with rank r .
Assume

n1 ≤ n2.

We start with the single value decomposition of M∗ as follows

M∗ = U∗Σ∗V ∗⊤,

where col(U∗) ∈ Rn1×r , col(V ∗) ∈ Rn2×r , and Σ∗ is a diagonal matrix
with entries singular values, denoted as σ1(M∗), . . . , σr (M∗) in
descending order. And we introduce condition number of matrix M∗ to
be

κ := σ1(M∗)/σr (M∗),

and we define an index subset Ω ⊂ [n1]× [n2] such that
(i , j) ∈ Ω ⇐⇒ M∗

ij is observed.
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Problem formulation and assumption II

Assumption 1 (Random sampling). In this report, we assume each
entry of M∗ is observed independently with probability 0 < p < 1. This
corresponds to missing at random in statistics terminology.
Example (Incoherence). Here we provide an example that satisfies
random sampling but causes unfaithful recovery. Consider M∗ being a
zero matrix except for 1 entry. If p = o(1), then with high probability,
the single nonzero entry would be missing, and any recovery method
would be in vain to recover the rank 1 property.

10000
00000
00000
00000
00000


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Problem formulation and assumption III

µ-incoherent. Motivated by the previous example, we define the
incoherence parameter µ of M∗ as follows

µ := max

{
n1∥U∗∥2

2,∞
r

,
n2∥V ∗∥2

2,∞
r

}
.

Recall that ∥U∗∥2,∞ = maxi ∥U∗
i,·∥2 is the largest ℓ2 norm among rows

of U∗. Also note by SVD, U∗ and V ∗ are unitary matrices, and thus
U∗U∗⊤ = Ir leading to ∥U∗∥2

F = r .

r
n1

=
1
n1

∥U∗∥2
F ≤ ∥U∗∥2

2,∞ ≤ ∥U∗∥2 = 1

=⇒ 1 ≤ µ ≤ max{n1,n2}/r = n2/r .

A smaller µ indicates the energy of singular vectors is spread out
across different elements.
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Algorithm I

Euclidean projection operator: PΩ : Rn1×n2 → Rn1×n2 . It is now
natural to define a projection from original space Rn1×n2 where M∗ lies
in a subspace of Rn1×n2 as follows:

[PΩ(M∗)]ij =

{
M∗

ij , if(i , j) ∈ Ω

0, else.

And our goal is to recover M∗ on the basis of PΩ(M∗).
Example:

Observed matrix =

1??2
2131
411?


PΩ(M∗) =

1002
2131
4110


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Algorithm II

Algorithm: Under the assumption of random sampling, we consider
an approximation M∗, M , through inverse probability weighting of
observed data matrix

M := p−1PΩ(M∗). (2)

Since the observed data is in the random subspace PΩ(M∗), M is in
fact a random approximation matrix. This construction leads to

EΩ(M) = M∗.

Then we compute rank-r SVD of M = UΣV⊤, and U,V are employed
as the estimates of U∗,V ∗, respectively.
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Example of inverse probability weighting

True matrix M∗ =

1222
2131
4113


Observed matrix =

1??2
2131
411?


PΩ(M∗) =

1002
2131
4110


Approximation matrix M := p−1PΩ(M∗)

Assume p and r are known. UΣV is the rank-r SVD of M.
We ask: how close is UΣV and M∗?
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Useful bounds of matrix norms

Lemma 1 (Lemma 3.20 of Chen et al. (2021))

Assume M∗ ∈ Rn1×n2 is µ-coherent. Then the following relations holds

∥M∗∥2,∞ ≤
√

µr/n1∥M∗∥ (3)

∥M∗⊤∥2,∞ ≤
√
µr/n2∥M∗∥ (4)

∥M∗∥∞ ≤ µr
√

1/n1n2∥M∗∥. (5)

Zhiling Gu (Iowa State U.) Matrix Completion November 21, 2022 13



Perturbation bound of M

Lemma 2 (Lemma 3.21 of Chen et al. (2021))

Suppose n2p ≥ Cµr log n2 for some constant C > 0, then with
probability at least 1 − O(n−10

2 ), one has

∥M − M∗∥ ≲

√
µr log n2

n1p
∥M∗∥.

The higher the probability of observation p is, the better the bound is.
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Recovery of U ,V

Theorem 3 (Theorem 3.22 of Chen et al. (2021))

Suppose n1p ≥ Cκ2µr log n2 for some constant C > 0, then with
probability at least 1 − O(n−10

2 ), one has

max {dist (U,U⋆) , dist (V ,V ⋆)} ≲ κ

√
µr log n2

n1p
.

Note that when the sample size pn1n2 ≫ κ2µrn2 log n2, the spectral
estimate achieves consistent estimation
max {dist (U,U⋆) , dist (V ,V ⋆)} = op(1).
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Recovery of M

Theorem 4 (Theorem 3.23 of Chen et al. (2021))

Suppose n2p ≥ Cµr log n2 for some constant C > 0, then with
probability at least 1 − O(n−10

2 ), one has

∥UΣV⊤ − M∗∥F ≲

√
µr2 log n2

n1p
∥M∗∥

The theorem above only requires Lemma 2 and characterizes the
statistical accuracy of UΣV⊤.
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Wedin’s Theorem

Theorem 5 (Wedin sinΘ theorem for singular subspace
perturbation, Theorem 3.22 of Chen et al. (2021))
If ∥E∥ < σ⋆

r − σ⋆
r+1, then one has

max {dist (U,U⋆) , dist (V ,V ⋆)} ≤
√

2max
{∥∥E⊤U⋆

∥∥ , ∥EV ⋆∥
}

σ⋆
r − σ⋆

r+1 − ∥E∥
.
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Proof of Theorem 3.22 of Chen et al. (2021) I
Sketch of the proof: (i) Prove E = M − M∗ satisfy ∥E∥ < σr (M∗)− σr+1(M∗), where
σr (M∗) is the r-th largest singular value of M∗. (ii) Apply Wedin’s theorem to E and use
lemma 2.
Step (i): recall n1 ≥ n2, thus the condition of lemma 2 is satisfied. Then

∥E∥ = ∥M − M∗∥ ≲

√
µr log n2

n1p
∥M∗∥.

In addition, recall that σ1(M∗) = ∥M∗∥ = κσr (M∗) by definition of singular value and κ.
Therefore

∥E∥ ≲

√
µr log n2

n1p
∥M∗∥ =

√
κ2µr log n2

n1p
σr (M∗)

≤
1
C
σr (M∗) for some large enough C > 0.

Choose C such that 1/C < 1 − 1/
√

2, we have

∥E∥ ≲ (1 −
1
√

2
)σr (M∗).

Note we can always choose a large enough C such that the condition of Wedin’s theorem
∥E∥ < σr (M∗)− σr+1(M∗) holds.
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Proof of Theorem 3.22 of Chen et al. (2021) II

Step (ii): Apply Wedin’s theorem to E , we have

max {dist (U,U⋆) , dist (V ,V⋆)}

≤
√

2max
{∥∥E⊤U⋆

∥∥ , ∥EV⋆∥
}

σr (M∗)− σr+1(M∗)− ∥E∥
by Wedin’s theorem

≤
√

2∥E∥max {∥U⋆∥ , ∥V⋆∥}
σr (M∗)− ∥E∥

by ∥AB∥ ≤ ∥A∥∥B∥

≤
√

2∥E∥
σ⋆

r − (1 − 1√
2
)σr (M∗)

by unitary matrix U∗,V∗

= 2∥E∥/σr (M∗) = 2κ∥E∥/σ1(M∗)

≲ κ

√
µr log n2

n1p
by Lemma 2.
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Proof of Theorem 3.23 of Chen et al. (2021)

By triangle inequality, we have

∥UΣV⊤ − M∗∥ ≤ ∥UΣV⊤ − M∥+ ∥M − M∗∥.

Note that UΣV⊤ is the SVD of M and thus the best rank-r approximation to M . Therefore
∥UΣV⊤ − M∥ ≤ ∥M − M∗∥, where M∗ is an unknown rank-r matrix.

In addition, since both UΣV⊤ and M∗ are of rank r , the difference between them would
have rank at most 2r . This leads to

∥UΣV⊤ − M∗∥ ≤ ∥UΣV⊤ − M∥+ ∥M − M∗∥
≤ 2∥M − M∗∥

∥UΣV⊤ − M∗∥F ≤
√

2r∥UΣV⊤ − M∗∥ by Remark *

≤ 2
√

2r∥M − M∗∥

≲

√
µr2 log n2

n1p
∥M∗∥ by Lemma 2.

Remark *:∥M∥F ≤
√

r∥M∥. This can be proved as follows. ∥M∥F =
√∑

i (e
⊤
i M⊤Mei ) =√∑

i (e
⊤
i UΣ2V⊤ei ) ≤

√∑r
i=1 ∥e⊤

i U∥2∥M∥2∥V⊤ei∥2 =
√

r∥M∥.
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Proof of Lemma 3.20 of Chen et al. (2021) I

We start the proofs of auxiliary lemmas with the following basic inequalities of matrix
norms.

(i) : ∥AB∥2,∞ ≤ ∥A∥2,∞∥B∥,
(ii) : ∥AB∥ ≤ ∥A∥∥B∥,

(iii) : ∥AB⊤∥∞ ≤ ∥A∥2,∞∥B∥.

▶ Define ej as the indicator vector, where the j-th entry is one, zero elsewhere.
Consider SVD A = U1Σ1V⊤

1 , and B = U2Σ2V⊤
2 .

▶ (i) ∥AB∥2,∞ = maxi ∥e⊤
i AB∥2 = maxi ∥e⊤

i A∥2∥U2Σ2V⊤
2 ∥2 ≤ ∥A∥2,∞∥Σ2∥2 ≤

∥A∥2,∞∥B∥.
▶ (ii) ∥AB∥ = ∥AB∥op = maxx ̸=0 ∥ABx∥2/∥x∥2 =

maxBx ̸=0 ∥ABx∥2/∥Bx∥2 maxx ̸=0 ∥Bx∥2/∥x∥2 = ∥A∥op∥B∥op = ∥A∥∥B∥.
▶ (iii) ∥AB⊤∥∞ = maxij |e⊤

i AB⊤ej | ≤ maxi ∥e⊤
i A∥2∥B⊤ej∥2 = ∥A∥2,∞∥B∥2,∞ by

Cauchy-Schwartz inequality. In addition, since ∥B∥2,∞ ≤ ∥B∥, we proved the third
inequality.
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Proof of Lemma 3.20 of Chen et al. (2021) II

Equipped with the inequalities above, we consider

∥M∗∥2,∞ = ∥U∗Σ∗V∗⊤∥2,∞

≤ ∥U∗∥2,∞∥Σ∗∥∥V∗∥ by (i)& (ii)

≤
√
µr

√
n1

∥M∗∥ by definition of coherence parameterµ ≥ n1∥U∗∥2
2,∞/r ,

Secondly,

∥M∗∥∞ = ∥U∗Σ∗V∗⊤∥∞
≤ ∥U∗∥2,∞∥Σ∗∥∥V∗∥2,∞ by (i)& (iii)

≤
√
µr

√
n1

∥M∗∥
√
µr

√
n2

=
µr

√
n1n2

∥M∗∥.
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Proof of Lemma 3.21 of Chen et al. (2021) I

Sketch of proof: (i) Decompose elements of E as sum of independent random matrices Xij .
(ii) Apply matrix Bernstein inequality to E .
Step (i): Recall that E = p−1PΩ(M∗)− M∗, and can be written as follows

p−1PΩ(M∗)− M∗ =

n1∑
i=1

n2∑
j=1

Xij

Xij = (p−1δij − 1)M∗
ij ei e⊤

j ,

where δij ∼ Ber(p) is indicator random variable for that (i, j)-th entry is observed; ei is the
i-th standard basis vector of appropriate dimension. It cann be seen that

E(Xij ) = 0, ∥Xij∥ ≤
1
p
∥M∗∥∞ ≤

µr
p
√

n1n2
∥M∗∥,

by Lemma 1.

Zhiling Gu (Iowa State U.) Matrix Completion November 21, 2022 23



Proof of Lemma 3.21 of Chen et al. (2021) II

Theorem 6 (Matrix Bernstein, Corollary 3.3 of Chen et al. (2021))
Let {Xi}1≤i≤m be a set of independent real random matrices with dimension n1 × n2. Suppose
that

E [Xi ] = 0, and ∥Xi∥ ≤ L, for all i.

For any a ≥ 2, with probability exceeding 1 − 2n−a+1 one has∥∥∥∥∥
m∑

i=1

Xi

∥∥∥∥∥ ≤
√

2av log n +
2a
3

L log n,

where n := max {n1, n2}, and variance statistic

v := max

{∥∥∥∥∥
m∑

i=1

E
[
(Xi − E [Xi ]) (Xi − E [Xi ])

⊤
]∥∥∥∥∥ ,

∥∥∥∥∥
m∑

i=1

E
[
(Xi − E [Xi ])

⊤ (Xi − E [Xi ])
]∥∥∥∥∥

}
.

(6)
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Proof of Lemma 3.21 of Chen et al. (2021) III

Step (ii): Apply matrix Bernstein inequality (Theorem 6), take L = µr
p
√

n1n2
∥M∗∥,

∥E∥ ≤
√

2av log n2 +
2a
3

µr
p
√

n1n2
∥M∗∥ log n2, ∀a > 2,

where

v = max


∥∥∥∥∥∥
∑

ij

E
[(

Xij
) (

Xij
)⊤]∥∥∥∥∥∥ ,

∥∥∥∥∥∥
∑

ij

E
[(

Xij
)⊤ (

Xij
)]∥∥∥∥∥∥

 .
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Proof of Lemma 3.21 of Chen et al. (2021) IV

For the first term in v , we have

∑
ij

E(Xij X⊤
ij ) =

∑
ij

E
{
(p−1δij − 1)2(M∗

ij )
2ei e⊤

j ej e⊤
i

}
=

1 − p
p

∑
ij

(M∗
ij )

2ei e⊤
i by random sampling δij ∼ Ber(p)

=
1 − p

p

n1∑
i=1

∥M∗
i,·∥2

2ei e⊤
i

⪯
1 − p

p
∥M∗∥2

2,∞

n1∑
i=1

ei e⊤
i

⪯
µr
n1p

∥M∗∥2In1 by Lemma 1

where A ⪯ B ⇐⇒ B − A is positive semidefinite. Similarly, we can derive

∑
ij

E(X⊤
ij Xij ) ⪯

µr
n2p

∥M∗∥2In2 .
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Proof of Lemma 3.21 of Chen et al. (2021) V

Thus, we can bound v as follows

v ≤
µr
n1p

∥M∗∥2

by noting that n1 ≤ n2. Combine the bound of v and the result of Bernstein inequality, we
have

∥E∥ ≲

√
µr∥M∗∥2 log n2

n1p
+

µr∥M∗∥ log n2

p
√

n1n2

with probability at least 1 − O(n−10
2 ) by setting a = 11. Since log n2 ≪

√
n2, the second

term above diminishes as n2 becomes large. In particular, when n2 ≳ µr∥M∗∥2 log n2, the
first term dominates the second term, which leads to

∥E∥ ≲

√
µr∥M∗∥2 log n2

n1p
.
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