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Abstract

In this report, we studied the Section 3.8 of Chen et al. [2021]. Overall, the objective is to
estimate the unobserved entries of a not fully observed matrix of interest, M⋆, of dimension
[n1]× [n2]. We considered the SVD of M⋆ = U⋆Σ⋆V ⋆⊤, and constructed the rank-r decom-
position UΣV ⊤ of a candidate approximation matrix M. The approximation accuracy of U,
V, and UΣV ⊤ for U⋆, V ⋆, and M⋆ were assessed with condition number κ and the incoher-
ence parameter µ in Theorems 3.22–3.23 [Chen et al., 2021]. These two theorems and related
lemmas were studied in detail. This report serves as EE623 Term Paper in Fall 2022.

1. Motivation
In the practice, it is extremely common to encounter missing data due to collection difficulty, er-
roneous data, and etc. And most of the data can be represented in the matrix. For example, if we
consider each row of a matrix is the features/ measurements of a single subject, a matrix would
represent the features of all the subjects/ population of interest. To tackle the missing data problem,
one important tool is matrix completion. See Figure 1 for illustration.

2. Preliminaries
In this section, the framework of matrix completion is given. We refer the readers to Section 6 for
the basic definitions and theorems used.

2.1. Problem formulation and assumption

Suppose the data matrix M∗ is of dimension n1 × n2 with rank r. Assume

n1 ≤ n2.

We start with the single value decomposition of M ⋆ as follows

M ⋆ = U ⋆Σ⋆V ⋆⊤,

where col(U ⋆) ∈ Rn1×r, col(V ⋆) ∈ Rn2×r, and Σ⋆ is a diagonal matrix with entries singular val-
ues, denoted as σ1(M

⋆), . . . , σr(M
⋆) in descending order. And we introduce condition number of

matrix M ⋆ to be the ratio of the largest singular value and the r-th largest singular value,

κ := σ1(M
⋆)/σr(M

⋆),

and we define an index subset Ω ⊂ [n1]× [n2] such that (i, j) ∈ Ω ⇐⇒ M ⋆
ij is observed.
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Figure 1: source: https://www.fredhutch.org/en/news/spotlight/2022/08/
bs-einav-cellsys.html

Assumption 1 (Random sampling). In this report, we assume each entry of M ⋆ is observed in-
dependently with probability 0 < p < 1. This corresponds to missing at random in statistics
terminology.
Example 1 (Incoherence). Here we provide an example that satisfies random sampling but causes
unfaithful recovery. Consider M ⋆ being a zero matrix except for 1 entry. If p = o(1), then with
high probability, the single nonzero entry would be missing, and any recovery method would be in
vain to recover the rank 1 property. 

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


µ-incoherent. Motivated by the previous example, we define the incoherence parameter µ of M ⋆

as follows

µ := max

{
n1∥U ⋆∥22,∞

r
,
n2∥V ⋆∥22,∞

r

}
.

Recall that ∥U ⋆∥2,∞ = maxi ∥U ⋆
i,·∥2 is the largest ℓ2 norm among rows of U ⋆. Also note by

SVD, U ⋆ and V ⋆ are unitary matrices, and thus U ⋆U ⋆⊤ = Ir leading to ∥U ⋆∥F = r. The following
inequality shows µ ≥ 1, and a smaller µ indicates the information of matrix is spread out across
different rows and columns.

r

n1

=
1

n1

∥U ⋆∥2F ≤ ∥U ⋆∥22,∞ ≤ ∥U ⋆∥2 = 1 =⇒ 1 ≤ µ ≤ max{n1, n2}/r = n2/r.

Euclidean projection operator: PΩ : Rn1×n2 → Rn1×n2 . It is now natural to define a projection
from original space Rn1×n2 where M ⋆ lies in a subspace of Rn1×n2 as follows:

[PΩ(M
⋆)]ij =

{
M ⋆

ij, if(i, j) ∈ Ω

0, else.
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And our goal is to recover M ⋆ on the basis of PΩ(M
⋆).

2.2. Algorithm

Under the assumption of random sampling, we consider the recovery of M ⋆, M , as the inverse
probability weighted average of observed data matrix

M := p−1PΩ(M
⋆). (1)

Since the observed data is in the random subspace PΩ(M
⋆), M is in fact a random recovery due to

the randomness of sampling over Ω. This construction leads to

EΩ(M) = M ⋆.

Then we compute the rank-r SVD of M = UΣV ⊤, following which UΣV ⊤, U , and V are
employed as the estimates of M ⋆, U ⋆, and V ⋆, respectively.
Example 2 (Inverse probability weighting). Here we provide an example of the process of inverse
probability weighting.

True matrix M ⋆ =

1 2 2 2
2 1 3 1
4 1 1 3


Observed matrix =

1 ? ? 2
2 1 3 1
4 1 1 ?


PΩ(M

⋆) =

1 0 0 2
2 1 3 1
4 1 1 0


Approximation matrix M := p−1PΩ(M

⋆).

Assume p and r are known. UΣV is the rank-r SVD of M. A natural question to ask is how close
are UΣV and M ⋆; U ⋆ and U ; V ⋆ and V from each other, respectively.

3. Main results
In this section, we present the main theoretical results.

Lemma 1 (Useful bounds of matrix norms, Lemma 3.20 of Chen et al. [2021]). Assume M ⋆ ∈
Rn1×n2 is µ-coherent. Then the following relations holds

∥M ⋆∥2,∞ ≤
√
µr/n1∥M ⋆∥ (2)

∥M ⋆⊤∥2,∞ ≤
√

µr/n2∥M ⋆∥ (3)

∥M ⋆∥∞ ≤ µr
√

1/n1n2∥M ⋆∥. (4)

Lemma 2 (Perturbation bound of M , Lemma 3.21 of Chen et al. [2021]). Suppose n2p ≥ Cµr log n2

for some constant C > 0, then with probability at least 1−O(n−10
2 ), one has

∥M −M ⋆∥ ≲

√
µr log n2

n1p
∥M ⋆∥.
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Theorem 1 (Recovery of U ,V , Theorem 3.22 of Chen et al. [2021]). Suppose n1p ≥ Cκ2µr log n2

for some constant C > 0, then with probability at least 1−O(n−10
2 ), one has

max {dist (U ,U ⋆) , dist (V ,V ⋆)} ≲ κ

√
µr log n2

n1p
.

Note that when the sample size pn1n2 ≫ κ2µrn2 log n2, the spectral estimate achieves consistent
estimation max {dist (U ,U ⋆) , dist (V ,V ⋆)} = op(1).

Theorem 2 (Recovery of M , Theorem 3.23 of Chen et al. [2021]). Suppose n2p ≥ Cµr log n2 for
some constant C > 0, then with probability at least 1−O(n−10

2 ), one has

∥UΣV ⊤ −M ⋆∥F ≲

√
µr2 log n2

n1p
∥M ⋆∥

The theorem above only requires Lemma 2 and characterizes the statistical accuracy of UΣV ⊤.

4. Proofs of lemmas
We start with the lemma for basic inequalities of matrix norms.

Proof of Lemma 1. Sketch of proof: Prove the three basic inequalities of matrix norms, and make
use of the definition of incoherence parameter.

We start with the following basic inequalities of matrix norms.

(i) ∥AB∥2,∞ ≤ ∥A∥2,∞∥B∥,
(ii) ∥AB∥ ≤ ∥A∥∥B∥,

(iii) ∥AB⊤∥∞ ≤ ∥A∥2,∞∥B∥.

To see the three inequalities, we can proceed as below. Define ej as the indicator vector, where
the j-th entry is one, zero elsewhere. Consider SVD A = U 1Σ1V

⊤
1 , and B = U 2Σ2V

⊤
2 .

(i) ∥AB∥2,∞ = maxi ∥e⊤
i AB∥2 = maxi ∥e⊤

i A∥2∥U 2Σ2V
⊤
2 ∥2 ≤ ∥A∥2,∞∥Σ2∥2 ≤ ∥A∥2,∞∥B∥.

(ii) ∥AB∥ = ∥AB∥op = maxx̸=0
∥ABx∥2
∥x∥2 ≤

{
maxBx ̸=0

∥ABx∥2
∥Bx∥2

}
·
{
maxx̸=0

∥Bx∥2
∥x∥2

}
= ∥A∥op∥B∥op =

∥A∥∥B∥.

(iii) ∥AB⊤∥∞ = maxij |e⊤
i AB⊤ej| ≤ maxi ∥e⊤

i A∥2∥B⊤ej∥2 = ∥A∥2,∞∥B∥2,∞ by Cauchy-
Schwartz inequality. In addition, since ∥B∥2,∞ ≤ ∥B∥, we proved the third inequality.

Equipped with the inequalities above, we consider

∥M ⋆∥2,∞ = ∥U ⋆Σ⋆V ⋆⊤∥2,∞
≤ ∥U ⋆∥2,∞∥Σ⋆∥∥V ⋆∥ by (i)& (ii)

≤
√
µr

√
n1

∥M ⋆∥ by definition of incoherence parameterµ ≥ n1∥U ⋆∥22,∞/r,
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In addition,

∥M ⋆∥∞ = ∥U ⋆Σ⋆V ⋆⊤∥∞
≤ ∥U ⋆∥2,∞∥Σ⋆∥∥V ⋆∥2,∞ by (i)& (iii)

≤
√
µr

√
n1

∥M ⋆∥
√
µr

√
n2

=
µr

√
n1n2

∥M ⋆∥.

We proved the first and third inequality of Lemma 1, and the second inequality follows exactly
the same as the first one.

Proof of Lemma 2. Sketch of proof: (i) Decompose elements of E as sum of independent random
matrices X ij . (ii) Apply matrix Bernstein inequality to E.

Step (i): Recall that E = p−1PΩ(M
⋆)−M ⋆, and can be written as follows

p−1PΩ(M
⋆)−M ⋆ =

n1∑
i=1

n2∑
j=1

X ij

X ij = (p−1δij − 1)M∗
ijeie

⊤
j ,

where δij ∼ Ber(p) is indicator random variable for that (i, j)-th entry is observed; ei is the i-th
standard basis vector of appropriate dimension. It cann be seen that

E(X ij) = 0, ∥X ij∥ ≤ 1

p
∥M ⋆∥∞ ≤ µr

p
√
n1n2

∥M ⋆∥,

by Lemma 1.
Step (ii): Apply matrix Bernstein inequality (Theorem 3), we have

∥E∥ ≤
√

2av log n2 +
2a

3

µr

p
√
n1n2

∥M ⋆∥ log n2, ∀a > 2,

where

v = max

{∥∥∥∥∥∑
ij

E
[
(X ij) (X ij)

⊤
]∥∥∥∥∥ ,

∥∥∥∥∥∑
ij

E
[
(X ij)

⊤ (X ij)
]∥∥∥∥∥

}
.

For the first term in v, we have∑
ij

E(X ijX
⊤
ij) =

∑
ij

E
{
(p−1δij − 1)2(M∗

ij)
2eie

⊤
j eje

⊤
i

}
=

1− p

p

∑
ij

(M∗
ij)

2eie
⊤
i by random sampling δij ∼ Ber(p)

=
1− p

p

n1∑
i=1

∥M ⋆
i,·∥22eie

⊤
i

⪯ 1− p

p
∥M ⋆∥22,∞

n1∑
i=1

eie
⊤
i

⪯ µr

n1p
∥M ⋆∥2In1 by Lemma 1
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where A ⪯ B ⇐⇒ B −A is positive semidefinite. Similarly, we can derive∑
ij

E(X⊤
ijX ij) ⪯

µr

n1p
∥M ⋆∥2In2

Thus, we can bound v as follows
v ≤ µr

n1p
∥M ⋆∥2

by noting that n1 ≤ n2. Combine the bound of v and the result of Bernstein inequality, we have

∥E∥ ≲

√
µr∥M ⋆∥2 log n2

n1p
+

µr∥M ⋆∥ log n2

p
√
n1n2

with probability at least 1−O(n−10
2 ) by setting a = 11. Since log n2 ≪

√
n2, the second term above

diminishes as n2 becomes large. In particular, when n2 ≳ µr∥M ⋆∥2 log n2, the first term dominates
the second term, which leads to

∥E∥ ≲

√
µr∥M ⋆∥2 log n2

n1p
.

5. Proofs of theorems
Proof of Theorem 1. Sketch of the proof: (i) Prove E = M − M ⋆ satisfy ∥E∥ < σr(M

⋆) −
σr+1(M

⋆), where σr(M
⋆) is the r-th largest singular value of M ⋆. (ii) Apply Wedin’s theorem to

E and use lemma 2.
Step (i): recall n1 ≥ n2, thus the condition of lemma 2 is satisfied. Then

∥E∥ = ∥M −M ⋆∥ ≲

√
µr log n2

n1p
∥M ⋆∥.

In addition, recall that σ1(M
⋆) = ∥M ⋆∥ = κσr(M

⋆) by definition of singular value and κ. There-
fore

∥E∥ ≲

√
µr log n2

n1p
∥M ⋆∥ =

√
κ2µr log n2

n1p
σr(M

⋆)

≤ 1

C
σr(M

⋆) for some large enough C > 0.

Choose C such that 1/C < 1− 1/
√
2, we have

∥E∥ ≲ (1− 1√
2
)σr(M

⋆).

Note we can always choose a large enough C such that the condition of Wedin’s theorem ∥E∥ <
σr(M

⋆)− σr+1(M
⋆) holds.
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Step (ii): Apply Wedin’s theorem to E, we have

max {dist (U ,U ⋆) , dist (V ,V ⋆)} ≤
√
2max

{∥∥E⊤U ⋆
∥∥ , ∥EV ⋆∥

}
σr(M

⋆)− σr+1(M
⋆)− ∥E∥

by Wedin’s theorem

≤
√
2∥E∥max {∥U ⋆∥ , ∥V ⋆∥}

σr(M
⋆)− ∥E∥

by ∥AB∥ ≤ ∥A∥∥B∥

≤
√
2∥E∥

σ⋆
r − (1− 1√

2
)σr(M

⋆)
by unitary matrix U ⋆,V ⋆

= 2∥E∥/σr(M
⋆) = 2κ∥E∥/σ1(M

⋆)

≲ κ

√
µr log n2

n1p
by Lemma 2.

Proof of Theorem 2. By triangle inequality, we have

∥UΣV ⊤ −M ⋆∥ ≤ ∥UΣV ⊤ −M∥+ ∥M −M ⋆∥.

Note that UΣV ⊤ is the SVD of M and thus the best rank-r approximation to M . Therefore
∥UΣV ⊤ −M∥ ≤ ∥M −M ⋆∥, where M ⋆ is an unknown rank-r matrix.

In addition, since both UΣV ⊤ and M ⋆ are of rank r, the difference between them would have
rank at most 2r. This leads to

∥UΣV ⊤ −M ⋆∥ ≤ ∥UΣV ⊤ −M∥+ ∥M −M ⋆∥
≤ 2∥M −M ⋆∥

∥UΣV ⊤ −M ⋆∥F ≤
√
2r∥UΣV ⊤ −M ⋆∥ by Remark *

≤ 2
√
2r∥M −M ⋆∥

≲

√
µr2 log n2

n1p
∥M ⋆∥ by Lemma 2.

Remark *: ∥M∥F ≤
√
r∥M∥. This can be proved by recognizing ∥M∥F =

√∑
i(e

⊤
i M

⊤Mei) =√∑
i(e

⊤
i UΣ2V ⊤ei) ≤

√∑r
i=1 ∥e⊤

i U∥2∥M∥2∥V ⊤ei∥2 =
√
r∥M∥. The second last inequality

holds because Σ is only nonzero on the first r diagonal entries (sigular values of M ), which are at
most ∥M∥ = ∥M∥op. The last equality holds because U and V are unitary matrices.

6. Miscellaneous
6.1. Norms

For any vector v, we denote by ∥v∥2, ∥v∥1 and ∥v∥∞ its ℓ2 norm, ℓ1 norm and ℓ∞ norm, respectively.
For any matrix A = [Ai,j]1≤i≤m,1≤j≤n, we let ∥A∥, ∥A∥∗, ∥A∥F and ∥A∥∞ represent respectively
its spectral norm (i.e., the largest singular value of A ), its nuclear norm (i.e., the sum of singular
values of A ), its Frobenius norm (i.e., ∥A∥F :=

√∑
i,j A

2
i,j ), and its entrywise ℓ∞ norm (i.e.,
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∥A∥∞ := maxi,j |Ai,j|). In particular, singular values of A are square roots of the eigenvalues of
AHA. The largest singular value σ1(A)= operator norm ∥A∥op := max∥x∥2=1 ∥Ax∥2.

We also refer to ∥A∥2,∞ as the ℓ2,∞ norm of A, defined as ∥A∥2,∞ := maxi ∥Ai,·∥2. Sim-
ilarly, we define the ℓ∞,2 norm of A as ∥A∥∞,2 :=

∥∥A⊤∥∥
2,∞. In addition, for any matrices

A = [Ai,j]1≤i≤m,1≤j≤n and B = [Bi,j]1≤i≤m,1≤j≤n, the inner product of A and B is defined as
and denoted by ⟨A,B⟩ =

∑
1≤i≤m,1≤j≤nAi,jBi,j = Tr

(
A⊤B

)
.

6.2. Singular Value Decomposition

Consider M = M ⋆ + E and M ⋆ be two matrices of Rn1×n2 , n1 ≤ n2. Let M ⋆ = U ⋆Σ⋆V ⋆,
M = UΣV as follows

M ⋆ =

n1∑
i=1

σ⋆
i u

⋆
iv

⋆⊤
i =

[
U ⋆ U ⋆

⊥
] [ Σ⋆ 0 0

0 Σ⋆
⊥ 0

] [
V ⋆⊤

V ⋆⊤
⊥

]
;

M =

n1∑
i=1

σiuiv
⊤
i =

[
U U⊥

] [ Σ 0 0
0 Σ⊥ 0

] [
V ⊤

V ⊤
⊥

]
.

Here, σ1 ≥ · · · ≥ σn1 (resp. σ⋆
1 ≥ · · · ≥ σ⋆

n1
) stand for the singular values of M (resp. M⋆)

arranged in descending order, ui (resp. u⋆
i ) denotes the left singular vector associated with the

singular value σi ( resp. σ⋆
i ), and vi (resp. v⋆

i ) represents the right singular vector associated with
σi ( resp. σ⋆

i ). In addition, we denote

Σ := diag ([σ1, · · · , σr]) , Σ⊥ := diag ([σr+1, · · · , σn1 ]) ,

U := [u1, · · · ,ur] ∈ Rn1×r, U⊥ := [ur+1, · · · ,un1 ] ∈ Rn1×(n1−r),

V := [v1, · · · ,vr] ∈ Rn2×r, V ⊥ := [vr+1, · · · ,vn2 ] ∈ Rn2×(n2−r)

We define UΣV ⊤ as the rank-r SVD of M ⋆. The matrices Σ⋆,Σ⋆
⊥,U

⋆,U ⋆
⊥,V

⋆,V ⋆
⊥ are defined

analogously.
In addition, we define the distance between two matrices as

dist (U ,U ⋆) := min
R∈Or×r

∥UR−U ⋆∥ (5)

6.3. Matrix Bernstein and Wedin Theorem

Theorem 3 (Matrix Bernstein, Corollary 3.3 of Chen et al. [2021]). Let {X i}1≤i≤m be a set of
independent real random matrices with dimension n1 × n2. Suppose that

E [X i] = 0, and ∥X i∥ ≤ L, for all i.

Set n := max {n1, n2}, and variance statistic

v := max

{∥∥∥∥∥
m∑
i=1

E
[
(X i − E [X i]) (X i − E [X i])

⊤
]∥∥∥∥∥ ,∥∥∥∥∥

m∑
i=1

E
[
(X i − E [X i])

⊤ (X i − E [X i])
]∥∥∥∥∥

}
.

(6)
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For any a ≥ 2, with probability exceeding 1− 2n−a+1 one has∥∥∥∥∥
m∑
i=1

X i

∥∥∥∥∥ ≤
√
2av log n+

2a

3
L log n.

Theorem 4 (Wedin sinΘ theorem for singular subspace perturbation, Theorem 3.22 of Chen et al.
[2021]). If ∥E∥ < σ⋆

r − σ⋆
r+1, then one has

max {dist (U ,U ⋆) , dist (V ,V ⋆)} ≤
√
2max

{∥∥E⊤U ⋆
∥∥ , ∥EV ⋆∥

}
σ⋆
r − σ⋆

r+1 − ∥E∥
.

7. Summary
In this report, we studied a simple setting of random sampling (i.e., missing at random), where the
probability of an entry being missing is equal across the matrix, and the events of missing entries
are independent. We introduced two key parameters: (i) condition number κ, and (ii) incoherence
parameter µ of matrix M ⋆ to describe the property of matrix M ⋆. The former shows the gap
between the information provided by the most and least informative singular sub-spaces. The latter
describes how spread-out the information is across the singular sub-spaces.

We then adopted the inverse probability weighting to produce approximation of U ⋆,V ⋆ and M ⋆

by U ,V ,UΣV ⊤, where UΣV ⊤ is the rank-r SVD of p−1PΩ(M
⋆), and PΩ(M

⋆) is the matrix
with missing entries replaced by 0. The proofs of approximation bounds

max {dist (U ,U ⋆) , dist (V ,V ⋆)} ≲ κ

√
µr log n2

n1p
,

∥UΣV ⊤ −M ⋆∥F ≲

√
µr2 log n2

n1p
∥M ⋆∥,

and related lemmas are then carefully studied.
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